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Stability of a hyperbolic disclination ring in a nematic liquid crystal
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The stability of a hyperbolic disclination ring in a nematic liquid crystal is considered by extending the
argument for a radial disclination ring due to Mori and Nakanishi. The ring configuration is indeed stable in the
presence of the saddle-splay elasticity~characterized byK24). The ring radius is estimated to bea;2.9r c , with
r c being the core radius whenK24.K/2, whereK is the Frank elastic constant in the one-constant approxi-
mation.
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Nematic liquid crystals@1,2# have attracted a great deal
interest as an experimentally accessible system showing
pological defects@3–5#, which include point and line singu
larities. One of the interesting properties of a topologi
defect in a nematic liquid crystal is that a radial~hyperbolic!
point defect with topological charge11(21) ~termed also
as a ‘‘hedgehog’’! can be transformed continuously into
disclination ring of strength11/2(21/2) ~for illustration of
these defects, see Fig. 1!. This was experimentally observe
by Lavrentovich and Terentjev@6# as a pathway of the tran
sition between radial and hyperbolic hedgehogs. The po
bility of continuous transformation between a point defe
and a disclination ring is closely associated with the head
invariance of the liquid crystal molecule~or the equivalence
of n and 2n in terms of the director!, which allows half-
integer defects. However, topological theories do not prov
any answer to the energetic stability of a point defect aga
transformation to a disclination ring and there have be
many theoretical attempts@7–16# to investigate which con-
figuration is energetically favorable. Main focus of the pr
vious studies is the stability of a radial hedgehog@Fig. 1~a!#
and most of the previous papers have concluded that a ra
point defect is intrinsically metastable or unstable to open
a disclination ring@Fig. 1~b!#, although the possibility tha
the presence of the saddle-splay elasticity makes a
shrink to a point has also been pointed out@10#. The aim of
this paper is to investigate, by extending a previous appro
by Mori and Nakanishi@7#, the stability of a hyperbolic poin
defect@Fig. 1~c!# versus a hyperbolic disclination ring@Fig.
1~d!#, which, to our knowledge, almost no previous theor
ical studies have paid attention to.

This work is motivated by our recent numerical study@17#
on a defect structure in liquid crystal colloids. Recently, l
uid crystal colloids and particles~or isotropic liquid droplets!
dispersed in a nematic host fluid, have been providing fa
nating problems concerning topological defects, because
configuration of topological defects is significantly influ
enced by various factors such as the size of the particle
the anchoring properties on the particle surface@18–21#. One
of the interesting and nontrivial configurations is a hyp
bolic hedgehog that lies close to a particle. This hedgeho
small enough to be regarded as pointlike in observations
optical methods and the theoretical studies@22–25#, concern-
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ing this hyperbolic hedgehog does not go into its detai
structure and most of them have assumed that it is a poin
the recent simulations performed by the present authors@17#,
however, the observation of a detailed structure of the to
logical defect was achieved by utilizing an adaptive me
refinement scheme and it was shown that the hyperb
hedgehog takes the form of a ring, not a point. Although t
paper deals with a different situation of an isolated hyp
bolic hedgehog, considering the lack of fundamental und
standing of the fine structure of a hyperbolic hedgehog,
believe that it should be worthwhile to present a theoreti
study on the intrinsic nature of a hyperbolic hedgehog def

We first review briefly the calculation of Mori and Nakan
ishi @7# who discussed the energetic stability of a radial d
clination ring @Fig. 1~b!#. They constructed an ansatz co
figuration of the directorn by assuming thatn is normal to
the surfaces of the ellipsoids of revolution,

r2

a2~11j2!
1

z2

a2j2
51, ~1!

where a is the radius of the ring disclination andj is a
positive parameter characterizing the ellipsoid. We have e
ployed the cylindrical coordinate (r,z,f) with r25x21y2.
The resultant form ofn is

FIG. 1. Schematic illustration of~a! a radial point defect~hedge-
hog!, ~b! a radial disclination ring,~c! a hyperbolic point defect
~hedgehog!, and~d! a hyperbolic disclination ring.
©2002 The American Physical Society03-1
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nr5
rj2

Ar2j41z2~11j2!2
,

nz5
z~11j2!

Ar2j41z2~11j2!2
, ~2!

nf50.

This ansatz configuration reduces to that of a radial po
disclination in the limita→0. Note that this ansatz configu
ration satisfies only the boundary conditionn→r/uru at uru
→` and does not satisfy the equilibrium condition even
the case of one constant approximation. Therefore, the
tortion energy calculated below should give the upper lim
of the minimum energy of the ring defect.

The distortion energy due to the radial disclination ring
evaluated by substituting the ansatz director field~2! to the
Frank elastic energy

F5
1

2E dr$K1~“•n!21K2~n•“3n!21K3un3~“3n!u2%

2E drK24“•@n3~“3n!1n~“•n!#. ~3!

We note that the saddle-splay elasticity is taken into acco
later by Lavrentovichet al. @10#. We also note that the splay
bend elasticity, whose elastic constant isK13, is dropped
here @26#. We introduce the ellipsoidal coordinate (j,h,f)
with

r25a2~11j2!~12h2!,

z5ajh. ~4!

The volume of integration is taken as 0<j<A(R/a)221,
which, in real space, corresponds to the region inside
ellipsoid of revolutionr2/R21z2/(R22a2)51. The volume
of integration, however, should not include the core reg
where the elastic energy density diverges. We take, as
excluded volume, the region that satisfiesj2,p2 and h2

,q2, wherep252r c /a1r c
2/a2 andq252r c /a2r c

2/a2, and
r c characterizes the size of the core region. The volume
integration in real space is illustrated in Fig. 2. We note t
this geometry is well defined whena.r c , because the two
core regions touch each other whena5r c . After some cal-
culation, we obtain forR/a→` and r c /a→0,

F58p~K12K24!R1O~a/R!12paH 2S 5

4
p2

1

2
I DK1

2S 1

4
p2

1

2
I DK31pK241O~Ar c /a!J

1
p2

4
~K11K3!a ln

a

2r c
12paEc , ~5!

whereI is the Catalan’s constant defined as
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dx
tan21x

x
.0.916. ~6!

The first term of Eq.~5! is equal to the distortion energy of
radial point disclination. The third term proportional to 2pa
corresponds to the line tension of the ring disclination a
the fourth terms arises from the cutoff of the core region. T
last term is the core energy, withEc being its line density.

We can readily apply the argument above to the case
hyperbolic disclination ring@Fig. 1~d!# by employing the
configuration

nr52
rj2

Ar2j41z2~11j2!2
,

nz5
z~11j2!

Ar2j41z2~11j2!2
, ~7!

nf50.

The difference between this configuration~7! and the origi-
nal one~2! for the radial disclination ring is just the sign o
nr . It can be shown easily that the configuration~7! reduces
to that of a hyperbolic point disclination in the limita→0
and therefore can be used as an ansatz configuration f
hyperbolic disclination ring. After some calculation, we o
tain

~“•n!25
j2

a2~j21h2!5~11j2!
$~j21h2!21~11j2!

3@~2h221!~j21h2!14h2~12h2!#%2, ~8!

n•“3n50, ~9!

un3“3nu25
h2~12h2!

a2~j21h2!5
@~2j211!~j22h211!21#2,

~10!

FIG. 2. The volume of integration for the evaluation of th
elastic energy is taken inside the outer ellipsoid. The shaded reg
indicate the excluded core regions.
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FIG. 3. The reduced elastic
energy of a disclination ring
F̄5 limR→`@F28p(K1K24)R/3#
/4pKr c as a function ofa/r c for
~a! K2450 and~b! K245K/2. Dot-
ted lines represent the results o
tained by using Eq.~12! asF after
truncating the contribution ofa
3O(Ar c /a). Notice again that
our model geometry is well de
fined whena/r c.1.
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5
2j2

a2~j21h2!3
@~2h221!~j21h2!14h2~12h2!#,

~11!

wherej andh are the ellipsoidal coordinates introduced
Eq. ~4!. The integration of the elastic energy density can
performed straightforwardly by substituting Eqs.~8!, ~9!,
~10!, and~11! to Eq. ~3! and when the volume of integratio
is taken same as that in the preceding argument~Fig. 2!, the
result is in the limit ofR/a→` and r c /a→0,

F5
8p

15
~3K112K315K24!R1O~a/R!

12paH 2S 1

4
p2

1

2
I D ~K11K3!2pK241O~Ar c /a!J

1
p2

4
~K11K3!a ln

a

2r c
12paEc . ~12!

The first term is again the distortion energy of a hyperbo
point disclination and the remaining terms are the ene
attributed to the ring disclination. Using the result obtain
above, we can estimate the equilibrium radius of a hyp
bolic ring disclination as a function of the elastic consta
and the core energy. We simplify the situation by adopt
the one constant approximationK15K35K. Then the equi-
librium radius becomes

a52r c expH 4

p S K24

K
p2

Ec

K
1

p

4
2I D J

52r c expS 4
K24

K
2

4

p

Ec

K
20.166D . ~13!

The core energy is roughly estimated asEc /r c
2;U/jN

3 ,
where U is a characteristic microscopic interaction ener
and jN is the nematic correlation length. The radius of t
defect corer c is of the order ofjN and the elastic constant i
roughly given asK;U/jN , which yieldsEc;K. When we
setEc5K and the saddle-splay elasticity is absent (K2450),
we obtaina.0.474r c , which implies that the disclination
ring is unstable to shrink to a point becausea,r c . The
saddle-splay elastic constantK24, however, has been show
01270
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experimentally@27# to be of the orderK and it follows from
the Cauchy relationship@28# that

K245
1

4
~K111K22!. ~14!

In the one constant approximation, Eq.~14! readsK245K/2
and Eq.~13! yieldsa.3.50r c . Therefore, in the presence o
saddle-splay elasticity, a hyperbolic point disclination can
unstable to form a disclination ring.

However, this result may cast a doubt to the se
consistency of the treatment above where we have drop
the contribution ofa3O(Ar c /a) in F. Therefore, we evalu-
ate the full elastic energy numerically with the aid of th
algebraic programMAPLE TM 6.01. In Fig. 3, we plot the re-
duced elastic energy of the disclination ringF̄5 lim

R→`

@F28p(K1K24)R/3#/4pKr c as a function ofa/r c under
the one-constant approximationK15K35K andEc5K. Fig-
ure 3 indicates that the qualitative feature of the elastic
ergy is the same as that in the previous treatment, altho
the equilibrium ring radius in the presence of saddle-sp
elasticity is slightly changed toa.2.92r c .

Finally, we briefly comment on the contribution of th
saddle-splay elasticity and the core energy to the stability
a hyperbolic disclination ring. As can be seen in the first te
of Eq. ~12!, the saddle-splay term gives a positive contrib
tion to the elastic energy in the case of a hyperbolic hed
hog. The relaxation of the hyperbolic configuration by t
transformation from a point disclination to a ring thus r
duces the elastic energy and the saddle-splay elasticity fa
the formation of a ring. We note that this contribution of th
saddle-splay elasticity has already been argued in a qua
tive manner or as a rough estimate in previous stud
@10,23,17# and our quantitative analysis presented here c
firms the importance of the saddle-splay elasticity. Althou
the estimated value ofa is rather small, it follows from Eq.
~13! thata depends sensitively on the core energyEc and that
the smallerEc yields largera. It has been shown@29,30# that
the disclination core is not an isotropic liquid and relaxes
distortion energy by taking a biaxial structure, which mig
lead to a smallerEc than the value used in the estimatio
above and therefore a largera. A more elaborate treatment o
the core properties such as a Landau-de Gennes approa
terms of a second-rank tensor order parame
@1,8,12,13,15,16,30# might be necessary to determine pr
cisely the equilibrium ring radius.
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In summary, we have shown that the argument of M
and Nakanishi, which is devoted to the discussion on
energetic stability of a radial disclination ring in a nema
liquid crystal, can be easily extended to the case of a hy
bolic disclination ring. It has also been shown that a hyp
K,

l.

an

01270
i
e

r-
r-

bolic disclination ring can be stable in the presence of
saddle-splay elasticity. The ring radiusa is estimated to be
a;2.9r c , with r c being the radius of the defect core, a
thougha is sensitively dependent on the elastic constants
the core energy.
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