PHYSICAL REVIEW E 66, 012703 (2002
Stability of a hyperbolic disclination ring in a nematic liquid crystal
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The stability of a hyperbolic disclination ring in a nematic liquid crystal is considered by extending the
argument for a radial disclination ring due to Mori and Nakanishi. The ring configuration is indeed stable in the
presence of the saddle-splay elastic¢ithiaracterized b ,,). The ring radius is estimated to be-2.% ., with
r. being the core radius whe,,~K/2, whereK is the Frank elastic constant in the one-constant approxi-
mation.
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Nematic liquid crystal$1,2] have attracted a great deal of ing this hyperbolic hedgehog does not go into its detailed
interest as an experimentally accessible system showing tstructure and most of them have assumed that it is a point. In
pological defect§3—5], which include point and line singu- the recent simulations performed by the present aufiafis
larities. One of the interesting properties of a topologicalnowever, the observation of a detailed structure of the topo-
defect in a nematic liquid crystal is that a radiayperbolio  logical defect was achieved by utilizing an adaptive mesh
point defect with topological charge 1(—1) (termed also refinement scheme and it was shown that the hyperbolic
as a “hedgehogf can be transformed continuously into a hedgehog takes the form of a ring, not a point. Although this
disclination ring of strength+ 1/2(— 1/2) (for illustration of ~ Paper deals with a different situation of an isolated hyper-
these defects, see Fig). This was experimentally observed bolic hedgehog, considering the lack of fundamental under-
by Lavrentovich and Terentjej\6] as a pathway of the tran- Standing of the fine structure of a hyperbolic hedgehog, we
sition between radial and hyperbolic hedgehogs. The possielieve that it should be worthwhile to present a theoretical
bility of continuous transformation between a point defectstudy on the intrinsic nature of a hyperbolic hedgehog defect.
and a disclination ring is closely associated with the head-tail e first review briefly the calculation of Mori and Nakan-
invariance of the liquid crystal moleculer the equivalence ishi [7] who discussed the energetic stability of a radial dis-
of n and —n in terms of the director which allows half- ~ clination ring[Fig. 1(b)]. They constructed an ansatz con-
integer defects. However, topological theories do not providdiguration of the directon by assuming than is normal to
any answer to the energetic stability of a point defect againghe surfaces of the ellipsoids of revolution,
transformation to a disclination ring and there have been
many theoretical attemp{§—16] to investigate which con- p + z
figuration is energetically favorable. Main focus of the pre- a’(1+¢&%) a%¢?
vious studies is the stability of a radial hedgel&ég. 1(a)]
and most of the previous papers have concluded that a radi¢here a is the radius of the ring disclination angl is a
point defect is intrinsically metastable or unstable to open ugpositive parameter characterizing the ellipsoid. We have em-
a disclination ring[Fig. 1(b)], although the possibility that Ployed the cylindrical coordinatep(z, ¢) with p?=x?+y?.
the presence of the saddle-splay elasticity makes a ringhe resultant form ofi is
shrink to a point has also been pointed fil@]. The aim of
this paper is to investigate, by extending a previous approacl(a) (b)
by Mori and Nakanishj7], the stability of a hyperbolic point
defect[Fig. 1(c)] versus a hyperbolic disclination ririérig. Y1 (/__
1(d)], which, to our knowledge, almost no previous theoret- \\\
the anchoring properties on the particle surfgc®-21]. One /(r
of the interesting and nontrivial configurations is a hyper-
bolic hedgehog that lies close to a particle. This hedgehog is FIG. 1. Schematic illustration dB) a radial point defecthedge-
small enough to be regarded as pointlike in observations byog, (b) a radial disclination ring(c) a hyperbolic point defect
optical methods and the theoretical studi22—25, concern-  (hedgehoy and(d) a hyperbolic disclination ring.
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ical studies have paid attention to.
This work is motivated by our recent numerical stuidy/]
on a defect structure in liquid crystal colloids. Recently, lig-

uid crystal colloids and particlgsr isotropic liquid droplets ~ (¢) (d)
dispersed in a nematic host fluid, have been providing fasci-
nating problems concerning topological defects, because th

configuration of topological defects is significantly influ-
enced by various factors such as the size of the particles o ﬂ
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This ansatz configuration reduces to that of a radial point

disclination in the limita— 0. Note that this ansatz configu- -(R-aH"

ration satisfies only the boundary condition-r/|r| at |r| , , .

— o and does not satisfy the equilibrium condition even in _FIG- 2. The volume of integration for the evaluation of the

the case of one constant approximation. Therefore, the dise_la_stlc energy is taken inside the outer ellipsoid. The shaded regions

tortion energy calculated below should give the upper IimitInOlICate the excluded core regions.

of the minimum energy of the ring defect. L
The distortion energy due to the radial disclination ring is |= fldxtan_ X

0 X

evaluated by substituting the ansatz director fi@dto the =0.916. )

Frank elastic energy

1 The first term of Eq(5) is equal to the distortion energy of a
E= _f dr{K(V- n)2+K,(n-Vxn)2+ KalnXx (Vxn)|?} radial point disclination. The third term proportional ter@
2 corresponds to the line tension of the ring disclination and
the fourth terms arises from the cutoff of the core region. The
—f drK,,V - [nX(VXn)+n(V-n)]. (3 last term is the core energy, witfy being its line density.
We can readily apply the argument above to the case of a

We note that the saddle-splay elasticity is taken into accourfiyPerbolic disclination ringFig. 1(d)] by employing the

later by Lavrentovictet al.[10]. We also note that the splay- configuration
bend elasticity, whose elastic constantKs;, is dropped
here[26]. We introduce the ellipsoidal coordinaté, ¢, ¢) . p&?
with P Jp2§4+22(1+§2)2’
p?=a’(1+&)(1- 7,
Z(1+ &%) @
f— n = )

z=aén. (4) 2 2B 21t )2
The volume of integration is taken as<G= \(R/a)’—1,
which, in real space, corresponds to the region inside the ng=0.

ellipsoid of revolutionp?/R?+ z?/(R?—a?)=1. The volume

of integration, however, should not include the core regionThe difference between this configurati6f) and the origi-
where the elastic energy density diverges. We take, as theal one(2) for the radial disclination ring is just the sign of
excluded volume, the region that satisfigs<p? and »° n,. It can be shown easily that the configurati@h reduces
<q? wherep?=2r./a+rZ/a? andq?=2r./a—r2/a? and to that of a hyperbolic point disclination in the limit—0

r. characterizes the size of the core region. The volume oénd therefore can be used as an ansatz configuration for a
integration in real space is illustrated in Fig. 2. We note thatyperbolic disclination ring. After some calculation, we ob-
this geometry is well defined whea>r., because the two tain

core regions touch each other wher r .. After some cal-

culation, we obtain foR/a—« andr./a—0, &
V.n)?= 2+ )2 (1+ £
. (V= e T e
F:87T(K1_K24)R+O(a/R)+27Ta - Z’ZT_EI Kl
X[(27°=1)(&+ ) +4n*(1- ) T}%  (®)
1 1
+7T2(K +K)aln— +27as (5) 21— 7?)
— aln—+2waé., -
4T ar, mxwxnfz= 20T (2 1) (2 n2e 1) -1,
a%(£%+ 7°)°
wherel is the Catalan’s constant defined as (10
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(a) (b) FIG. 3. The reduced elastic

10+ 19 energy of a disclination ring
F=limg_..[F—8m(K+Ky)R/3]
l47Kr . as a function ofa/r for

10 (a) K»4=0 and(b) K,,=K/2. Dot-

? ted lines represent the results ob-
tained by using Eq(12) asF after
truncating the contribution of
X O(\re/a). Notice again that
our model geometry is well de-
fined whena/r>1.
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V- [nX(VXn)+n(V-n)] experimentally{27] to be of the ordeK and it follows from
the Cauchy relationshif28] that

252 2 2 2 2 2
L@ D(E ) (L)

- 1
a(¢+ Kaa=7 (K1t Kao). (14

11
In the one constant approximation, E@4) readsK,,=K/2
where¢ and 7 are the ellipsoidal coordinates introduced in and Eq.(13) yieldsa=3.50.. Therefore, in the presence of
Eqg. (4). The integration of the elastic energy density can besaddle-splay elasticity, a hyperbolic point disclination can be
performed straightforwardly by substituting Eq$), (9),  unstable to form a disclination ring.
(10), and(11) to Eq.(3) and when the volume of integration  However, this result may cast a doubt to the self-
is taken same as that in the preceding arguniéigt 2), the  consistency of the treatment above where we have dropped

result is in the limit ofR/a—c andr./a—0, the contribution ofax O(+/r./a) in F. Therefore, we evalu-
8 ate the full elastic energy numerically with the aid of the
F= 1—75T(3K1+ 2K3+5K )R+ O(a/R) algebraic progranmapLe ™ 6.01. In Fig. 3, we plot the re-

duced elastic energy of the disclination rirkg=lim

R—

1 1 A [F—8m(K+K,)R/3]/4mwKr, as a function ofa/r. under

t2ma) —| 77— 51 |(Ki+Ky) = 7Kop+ O(Vrc/a) the one-constant approximati#n = K;=K and&,=K. Fig-
5 ure 3 indicates that the qualitative feature of the elastic en-
™ a ergy is the same as that in the previous treatment, although
* T(K1+K3)aln2—rc+27ragc. 12 the equilibrium ring radius in the presence of saddle-splay

elasticity is slightly changed ta=2.9% ..
The first term is again the distortion energy of a hyperbolic Finally, we briefly comment on the contribution of the
point disclination and the remaining terms are the energwaddle-splay elasticity and the core energy to the stability of
attributed to the ring disclination. Using the result obtaineda hyperbolic disclination ring. As can be seen in the first term
above, we can estimate the equilibrium radius of a hyperef Eq. (12), the saddle-splay term gives a positive contribu-
bolic ring disclination as a function of the elastic constantstion to the elastic energy in the case of a hyperbolic hedge-
and the core energy. We simplify the situation by adoptinghog. The relaxation of the hyperbolic configuration by the
the one constant approximatiéh, = K;=K. Then the equi- transformation from a point disclination to a ring thus re-

librium radius becomes duces the elastic energy and the saddle-splay elasticity favors
the formation of a ring. We note that this contribution of the
B 4 (Ko & m saddle-splay elasticity has already been argued in a qualita-
a=2reexp—|——m7— -+ --—1 . ’ . . .
K K 4 tive manner or as a rough estimate in previous studies

[10,23,17 and our quantitative analysis presented here con-
—or exp{ 4@_ f é_o 166) (13) firms the importance of the saddle-splay elasticity. Although
¢ K =K 7 ' the estimated value d&f is rather small, it follows from Eq.
(13) thata depends sensitively on the core enefgyand that
The core energy is roughly estimated &s/r2~U/&,  the smalleis, yields largera. It has been showf29,30 that
where U is a characteristic microscopic interaction energythe disclination core is not an isotropic liquid and relaxes the
and &y is the nematic correlation length. The radius of thedistortion energy by taking a biaxial structure, which might
defect core ; is of the order offy and the elastic constant is lead to a smalle€, than the value used in the estimation
roughly given aK~U/§y, which yieldsé.~K. When we  above and therefore a largarA more elaborate treatment of
set&.=K and the saddle-splay elasticity is abseélsf=0), the core properties such as a Landau-de Gennes approach in
we obtaina=0.474 ., which implies that the disclination terms of a second-rank tensor order parameter
ring is unstable to shrink to a point becauser.. The [1,8,12,13,15,16,30might be necessary to determine pre-
saddle-splay elastic constaft,, however, has been shown cisely the equilibrium ring radius.
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In summary, we have shown that the argument of Moribolic disclination ring can be stable in the presence of the
and Nakanishi, which is devoted to the discussion on theaddle-splay elasticity. The ring radiasis estimated to be
energetic stability of a radial disclination ring in a nematica~2.9., with r. being the radius of the defect core, al-
liquid crystal, can be easily extended to the case of a hypethougha is sensitively dependent on the elastic constants and
bolic disclination ring. It has also been shown that a hyperthe core energy.
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